Excel perfectionnement Formules et fonctions

Support de cours

Dans la version PDF de ce document, tous les titres de la table des matières sont cliquables. Ils vous emmènent directement à la page mentionnée. Le mini logo de l'en-tête vous renverra en début de document.

Ce document est la propriété intellectuelle d'ENCLR Merci de ne pas le diffuser ou le reproduire sans son autorisation.

TABLE DES MATIERES

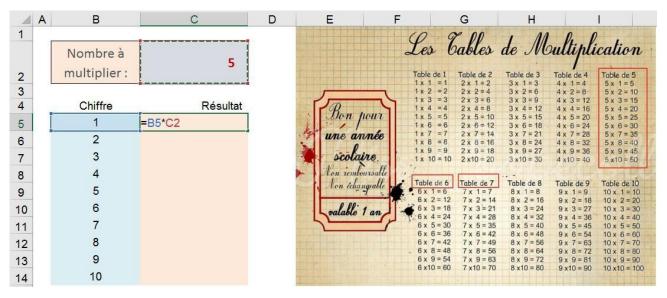
Pictogrammes utilises dans ce support	4
REFERENCES ABSOLUES ET RELATIVES (\$)	5
Le langage des dollars	5
Limite des recopies de formules	5
Méthode pour poser les \$ dans vos formules	6
Référence relative ou absolue : verbiage d'Excel	7
Méthode simplifiée pour poser vos dollars	7
Exemples d'application	8
FONCTIONS CONDITIONNEES	11
Syntaxe des comparateurs	11
NB.SI	12
SOMME.SI	16
SI et ses déclinaisons	20
SI	20
SI(SI)	21
SI(ET), SI(OU)	23
Imbrication de fonctions SI, ET, OU	24
FONCTIONS FINANCIERES	25
Les cinq variables de la finance	25
Fonction VPM (montant à rembourser)	27
Fonction VPM (versement programmé)	28
Fonction VC (capital constitué)	29
Fonction VA (capital empruntable)	30
Fonction NPM (durée d'un prêt bancaire)	31
Fonction TAUX (rentabilité d'un placement)	32
Exercice à faire chez vous	33
Fonctions Mathematiques & Statistiques	34
Fonctions Equiv et Index	34
Fonctions mathématiques simples	36
Fonctions statistiques	40
Automatiser des taches avec l'enregistreur de macro-commandes	48
Afficher l'onglet Développeur	48
Bon à savoir sur les macro-commandes	

	Enregistrer une macro	.49
	Utiliser une macro-commande	.51
	Affecter une macro-commande à un bouton	.51
R	ACCOURCIS EXCEL VRAIMENT UTILES	.52

PICTOGRAMMES UTILISES DANS CE SUPPORT

REFERENCES ABSOLUES ET RELATIVES (\$)

Le langage des dollars


Ce chapitre traite de l'utilisation des dollars dans les formules de calcul. Vous avez sans doute déjà vu des formules de calcul qui ressemblent à ceci = \$B6+E\$4 ou bien à ceci : =F9*(1+\$F\$18).

Les **dollars** sont très importants à maîtriser dans Excel si vous souhaitez ultérieurement utiliser des fonctions plus avancées. C'est une sorte de langage universel connu de toutes les personnes qui rédigent des fonctions dans Excel, et pour cette raison, il est utile de le comprendre.

Limite des recopies de formules

Depuis les derniers exercices, nous recopions des formules de calcul avec la poignée de recopie, et les résultats sont toujours justes. Pourtant, il arrive que des erreurs surviennent lorsqu'une cellule est un « point fixe », comme par exemple un taux de TVA ou un Taux kilométrique.

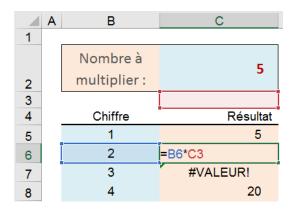
Exemple : nous allons essayer de compléter la table de multiplication par 5 en tapant une seule formule en C5, puis en recopiant vers le bas.

Le résultat fait 5, ce qui est normal.

Recopions la formule vers le bas avec la poignée. Oups, pas mal d'erreurs s'affichent!

4	Chiffre	Résultat
5	1	5
6	2	-
7	3	#VALEUR!
8	4	20
9	5	-
10	6	#VALEUR!
11	7	140
12	8	-
13	9	#VALEUR!
14	10	1 400

Méthode pour poser les \$ dans vos formules


Pour analyser ces erreurs, je vous propose une méthode simple, en trois points, qui vous permettra de poser le ou les dollars aux bons endroits dans vos futures formules de calcul.

Double Cliquez sur la première cellule qui renvoie une erreur.

Ici, c'est la cellule C6, qui devrait renvoyer le nombre 10 car 2 * 5 = 10.

Regardez attentivement les interactions de couleurs. La cellule bleue est bien à sa place, mais la cellule rouge est « trop basse ». Elle devrait pointer au-dessus, là où se trouve le 5!

Rédigez sur un papier brouillon la phrase magique, en prenant soin de l'écrire de cette manière:

« au lieu de pointer en C2, la cellule a glissé en C3 ».

Le problème provient en effet du fait que C2 a glissé en C3 lors de la recopie. Le C, lui, n'a pas bougé, et n'a pas besoin d'être bloqué. En revanche, il faut bloquer le 2 dans la cellule C2 pour œle glissement observé n'arrive plus lors de la recopie. Pour bloquer la ligne 2, il suffit de placer un \$ juste devant. Il aurait donc fallu écrire C\$2 au lieu de C2, tout simplement.

Corrigez le problème dans la cellule d'origine. Ajoutez le dollar en remplaçant C2 par C\$2, puis recopiez à nouveau vers le bas à l'aide de la poignée de recopie afin de propager la bonne formule.

Bravo !

5

13

14

	Α	В	С
1			
2		Nombre à multiplier :	5
3 4	ľ	Chiffre	Résultat
5		1	=B5*C\$2
6		2	-

7	3	15
8	4	20
9	5	25
10	6	30
11	7	35
12	8	40
13	9	45

Chiffre

1

2

10

50

Résultat

5

10

Référence relative ou absolue : verbiage d'Excel

Il y a **4 possibilités** pour poser des **dollars** sur une cellule dans une formule de calcul :

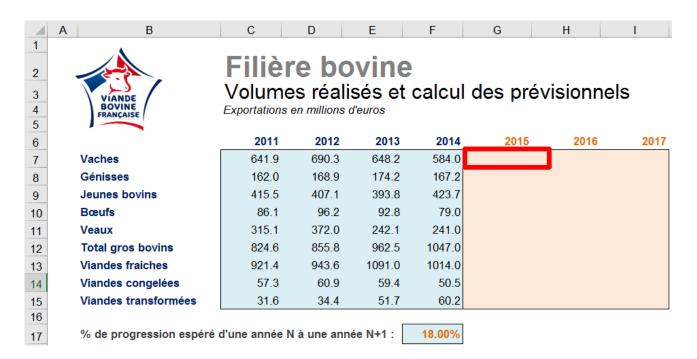
C2 Aucune référence, la cellule est « libre » et se décalera à la recopie

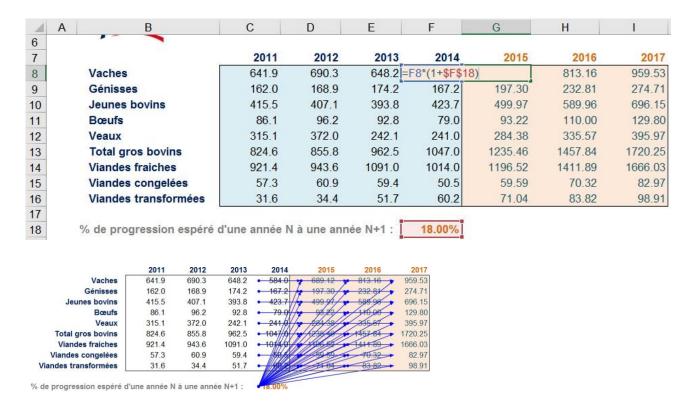
C\$2 Référence relative : la ligne est bloquée lors de la recopie (vers le bas)

\$C2 Référence relative : la colonne est bloquée lors de la recopie (vers la droite)

\$C\$2 Référence absolue : colonne et ligne sont bloquées lors de tout type de recopie

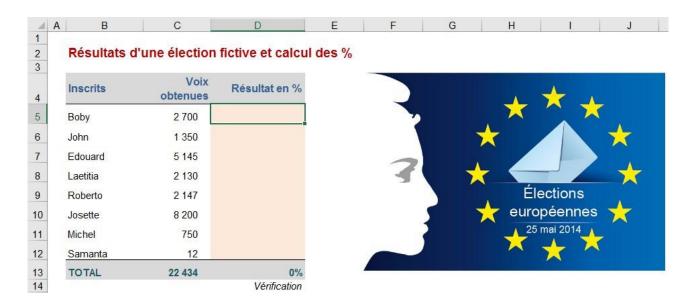
Méthode simplifiée pour poser vos dollars

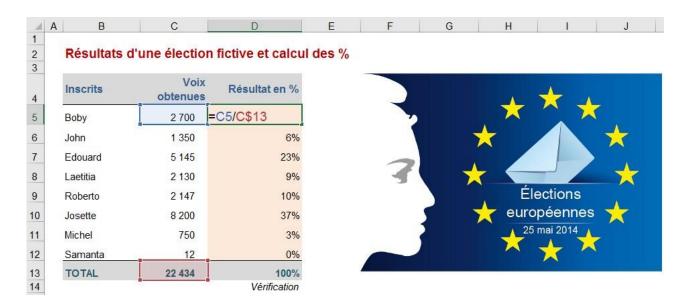



Exemples d'application

Référence absolue

Vous souhaitez écrire une seule formule de calcul, en G7, afin d'augmenter la valeur de l'année précédente du montant de 18,00%, indiqué sous le tableau.

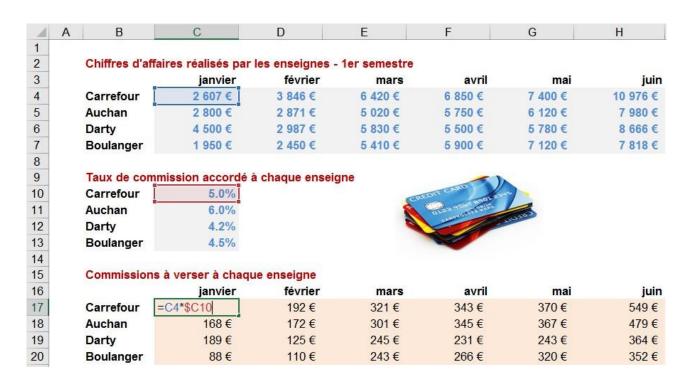

Solution: vous devez bloquer complétement la cellule **F17**, en l'écrivant **\$F\$17** dans la formule, puis recopier à droite, puis en bas (ou l'inverse):



Référence relative avec ligne bloquée

Vous souhaitez calculer le résultat des voix en pourcentage obtenu par des candidats à une élection.

Solution: vous devez bloquer la ligne dans la cellule **C13**, puisque vous recopiez vers le bas uniquement. Vous devez écrire **C\$13** dans la formule, puis recopier à nouveau vers le bas.

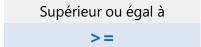


Référence relative avec colonne bloquée

Vous souhaitez calculer les commissions dues chaque mois pour les 4 enseignes renseignées dans la colonne B. Vous possédez les CA réalisés et les taux de commission de chaque enseigne.

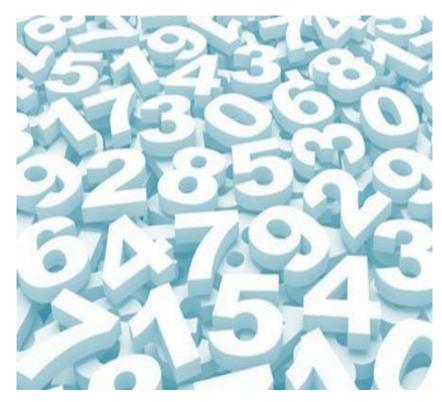
Solution: vous devez bloquer la colonne dans la cellule **C10**, puisque vous recopiez vers la droite, et qu'aucun taux de commission n'existe dans les colonnes D et suivantes. La seule chose à faire **\(\vec{u}\)** est donc d'\(\vec{e}\) crire **\$C10** dans la formule, puis recopier à nouveau vers la droite et vers le bas.

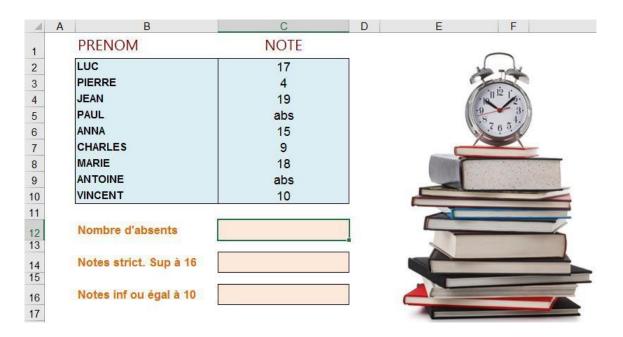
FONCTIONS CONDITIONNEES


Syntaxe des comparateurs

Rappel indispensable

Dans toutes les formules conditionnelles, vous aurez à comparer. Ci-dessous, un rappel indispensable à considérer avant de bien débuter avec les fonctions conditionnelles.


Comparateurs à connaître Supérieur à


NB.SI

NB.SI - Compter sous condition

Nous avons déjà abordé les fonctions avec la racine **NB** (**NB**, **NBVAL**, **NB.VIDE**) dans un épisode précédent. **NB.SI** permet quant à lui de compter les cellules dans une plage sous condition que le critère soit respecté. Vous allez donc devoir rédiger un critère dans vos fonctions.

Syntaxe : = NB.SI(plage ; critère) NB.SI(plage; critère)

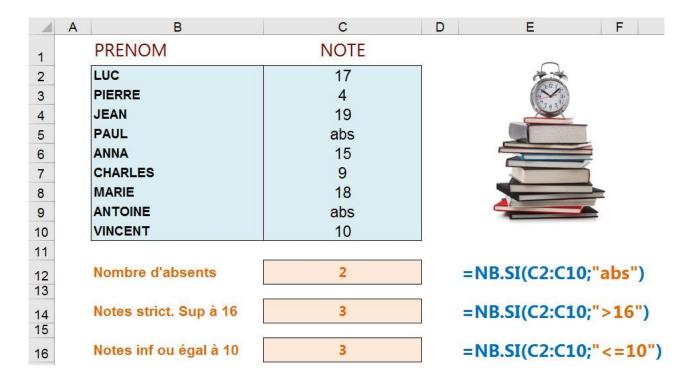
Nous allons traiter 3 exemples simples, dans le cadre d'une supposée remise de note d'examen pour un petit groupe d'élèves.

Première question : combien y a-t-il eu d'absents ?

La fonction =NB.SI(C2:C10; "abs") renvoie le nombre de chiffres, dans la plage C2:C10, qui remplissent la condition, c'est à dire, dans notre exemple, qui sont égales à abs (Excel n'est pasensible à la casse, donc vous pouvez taper abs tout comme ABS). Le résultat fournit la bonne réponse, soit 2.

Deuxième question : combien d'élèves ont-ils eu plus de 16 ?

La fonction =NB.SI(C2:C10;">16")² renvoie le nombre de chiffres, dans la plage C2:C10, qui remplissent la condition, c'est à dire, dans notre exemple, qui sont strictement supérieurs à 16. Le résultat fournit la bonne réponse, soit 3.


¹ N'oubliez pas d'écrire les portions de textes entre guillemets!

² Cela peut paraître étrange, mais le critère entier (y compris le chiffre 16) doit être mis entre guillemets)

Troisième question: combien d'élèves ont-ils eu (non strictement) moins de 10?

La fonction =NB.SI(C2:C10;"<=10") renvoie le nombre de chiffres, dans la plage C2:C10, qui remplissent la condition, c'est à dire, dans notre exemple, qui sont inférieurs ou égaux à 10. Le résultat fournit la bonne réponse, soit 3.

NB.SI - Identifier des doublons

J'avais envie de partager avec vous une utilisation astucieuse de la fonction **NB.SI**. Elle peut permettre d'identifier les doublons, mais en repérant précisément le nombre de fois où apparaît un élément dans une colonne. Avec cette méthode, vous saurez, du coup, s'il y a doublon, triplon, etc.

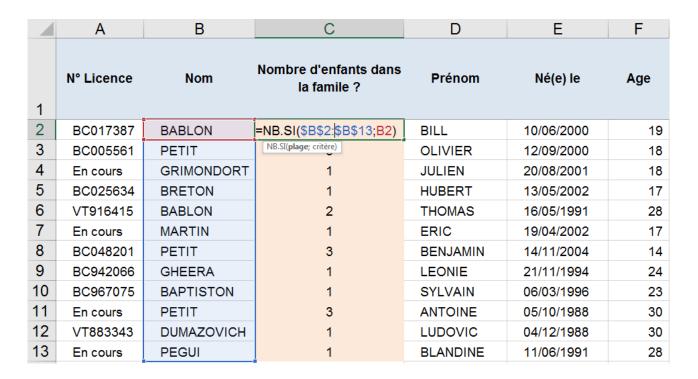
Voici la liste des personnes inscrites dans votre club de basket³.

Vous souhaitez connaître le **nombre de personnes qui sont venus pour chaque famille**. Ainsi, vous pourrez par exemple accorder 5% de remise sur l'inscription pour ceux qui inscrivent 2 enfants, 10% pour 3 enfants, etc.

La question est donc : combien de fois chaque NOM est-il compté dans la colonne **C** ?

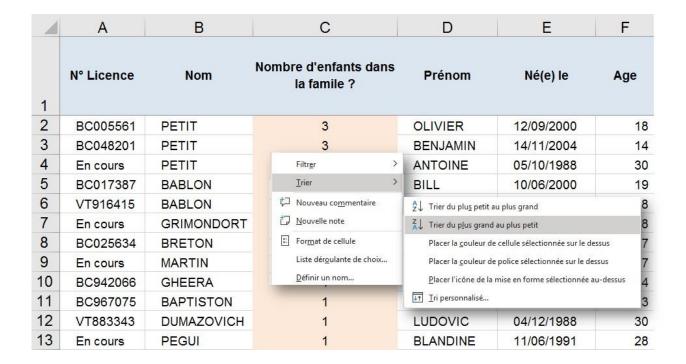
	Α	В	С	D	E	F
1	N° Licence	Nom	Nombre d'enfants dans la famile ?	Prénom	Né(e) le	Age
2	BC017387	BABLON		BILL	10/06/2000	19
3	BC005561	PETIT		OLIVIER	12/09/2000	18
4	En cours	GRIMONDORT		JULIEN	20/08/2001	18
5	BC025634	BRETON		HUBERT	13/05/2002	17
6	VT916415	BABLON		THOMAS	16/05/1991	28
7	En cours	MARTIN		ERIC	19/04/2002	17
8	BC048201	PETIT		BENJAMIN	14/11/2004	14
9	BC942066	GHEERA		LEONIE	21/11/1994	24
10	BC967075	BAPTISTON		SYLVAIN	06/03/1996	23
11	En cours	PETIT		ANTOINE	05/10/1988	30
12	VT883343	DUMAZOVICH		LUDOVIC	04/12/1988	30
13	En cours	PEGUI		BLANDINE	11/06/1991	28

On peut répondre à cette question en utilisant **NB.SI**, mais en faisant en sorte que le critère devienne une variable. Et cette variable va précisément être **B2**, qui contient, pour notre première formule de calcul, le nom **BABLON**.


La formule sera écrite de cette manière : =NB.SI(\$B\$2:\$B\$13;B2)

La plage dans laquelle vous souhaitez compter est en effet la colonne des noms. Mais comme vous prévoyez de recopier votre formule vers le bas, vous n'oubliez pas de bloquer entièrement la plage à l'aide des dollars (\$). Le critère est la cellule de gauche qui contient le nom, soit **B2**.

³ On admet qu'il n'y a pas d'homonyme dans la liste.



Le résultat en image :

On constate que les **PETIT** sont venus en force, avec **trois** inscriptions! Les **BABLON** sont au nombre de **deux**.

Vous pourriez, à ce stade, trier la colonne **C** en mode décroissant pour plus de confort dans vos traitements futurs.

SOMME.SI

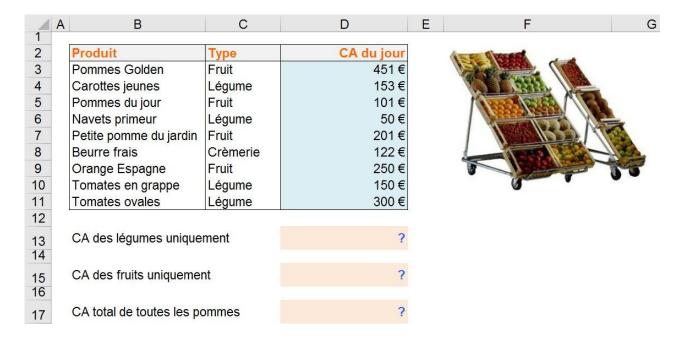
Si la fonction **SOMME** peut s'accoutrer de l'extension **.SI** ou de **.SI.ENS**, cela implique que d'autres fonctions en sont capables. Par exemple, les fonctions **MOYENNE**, **NB**, **MAX** et **MIN** fonctionneront exactement de la même manière.

Ainsi, il existe d'autres fonctions que **SOMME.SI** et **SOMME.SI.ENS**, par exemple : **MOYENNE.SI**, **MOYENNE.SI.ENS**, **MAX.SI**, **MAX.SI.ENS**, **MIN.SI**, **MIN.SI.ENS**, **NB.SI**, **NB.SI.ENS**. En traitant le fonctionnement de SOMME, vous serez alors capable d'exploiter vous-même les autres fonctions utilisant les mêmes extensions.

SOMME.SI

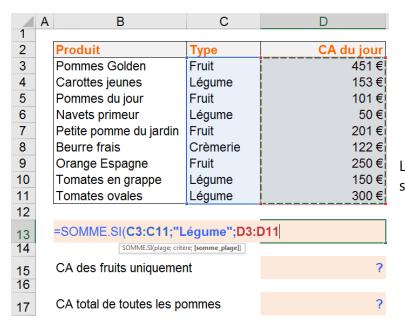
SOMME.SI permet d'effectuer une somme dans une plage, sous réserve qu'un critère soit respecté (vous ne pouvez utiliser qu'un critère avec cette fonction).

Syntaxe officielle : =SOMME.SI(plage ; critère ; [somme_plage])


Syntaxe personnelle : =SOMME.SI(plage_critère ; critère ; [somme_plage])

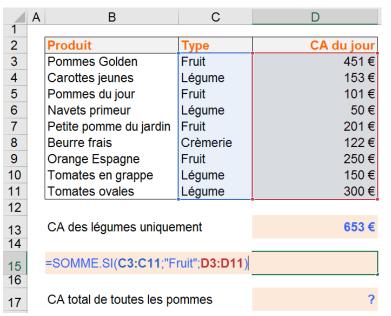
Je préfère en effet le terme plage_critère, qui est bien plus explicite et porte moins à confusion.

L'argument [somme_plage] est optionnel. S'il est ignoré, il sera remplacé par plage_critère. Aussi, je vous conseille vivement de toujours renseigner les 3 arguments dans la fonction SOMME.SI.


Expérimentons cette fonction avec l'exemple d'un vendeur de fruits et légumes qui fait le bilan **d**on chiffre d'affaires, une fois le marché terminé.

Le maraîcher se pose trois questions :

Première question : quel est mon chiffre d'affaires pour les légumes uniquement ?

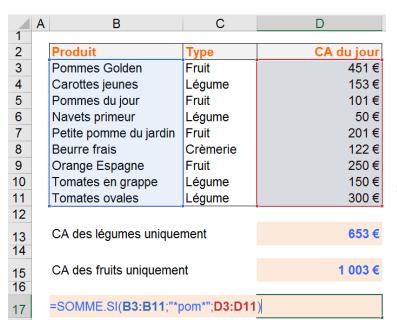

La fonction **=SOMME.SI(C3:C11;"Légume";D3:D11)** renvoie la somme des chiffres de la colonne rouge, (celle des chiffres d'affaires), mais seulement pour les légumes (la plage du critère est æffet la plage **C3:C11**. Le critère, quant à lui, s'écrit bien entendu entre guillemets : **"Légume"**.

Le résultat fournit la bonne réponse, soit 153 + 50 + 150 + 300 = **653.€**

Deuxième question : quel est le chiffre d'affaires pour les fruits uniquement ?

Même fonction, en changeant uniquement le critère dans la colonne **Type** : la fonction **=SOMME.SI(C3:C11;"Fruit";D3:D11)** renvoie la somme des chiffres de la colonne rouge, (de des chiffres d'affaires), mais seulement pour les fruits (la plage du critère est en effet la plage **C3:C11**. Le critère, quant à lui, s'écrit bien entendu entre guillemets : **"Fruit"**.

Le résultat fournit la bonne réponse, soit 451 + 101 + 201 + 250 = **1 003.€**


Troisième question : quel est le chiffre d'affaires pour les pommes uniquement ?

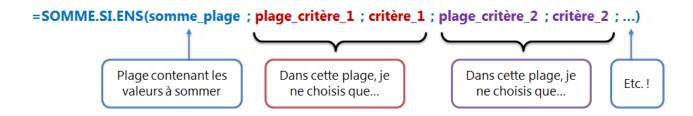
Vous utiliserez encore la même fonction **SOMME.SI** ; mais le critère concerne la colonne **Produit**. De plus, il y a une difficulté : dans cette colonne **Produit**, on trouve aussi bien :

- Pommes Golden
- Pommes Golden
- Petite pomme du jardin

Il faut donc écrire un critère en jouant avec la fameuse * que nous avons vue dans les filtres de Bases de Données. Nous allons rechercher toutes les cellules qui contiennent le terme **pom**, mais pour que **pom** soit trouvé n'importe où dans la cellule, il faudra chercher ***pom*** (l'étoile représente une chaîne de caractère de longueur variable). Enfin, puisque le terme *pom* est une chaîne de texte, le tout devra être encadré par des quillemets.

Voici la fonction finalisée : =**SOMME.SI(B3:B11;"*pom*";D3:D11)**. Elle renvoie la somme des chiffres de la colonne rouge, (celle des chiffres d'affaires), mais seulement pour les produits **q** contiennent le terme **pom**.

Le résultat fournit la bonne réponse, soit 451 + 101 + 201 = **753.€**


Une astuce qui paraît évidente, mais que je préfère vous rappeler : lorsque vous définissez l'argument **somme_plage**, sélectionnez une colonne **qui contient des chiffres** . La fonction SOMME.SI fonctionnera ainsi beaucoup mieux.

SOMME.SI.ENS

fait la même chose que **SOMME.SI**, mais permet d'intégrer plusieurs critères. Cela rend vos formules plus puissantes, mais aussi plus longues à rédiger.

Avant de commencer, sachez que **SOMME.SI.ENS** (ENS veut dire : ensemble de critères) s'écrit **e** mode inversé de sa cousine **SOMME.SI**. En effet, vous devrez écrire d'abord, comme premier argument, où se trouve somme_plage (la plage dans laquelle vous faîtes la somme). Ensuite, vous pourrez, par paire, écrire les arguments de plages de critère + critère.

Dans cet exemple, vous êtes vendeur dans un magasin Darty, au rayon électro-ménager. En fin de journée, votre chef vous transmet vos résultats. Vous vous posez les deux questions ci-dessous :

Solutions:

SI et ses déclinaisons

SI

Cette fonction est fréquemment utilisée dans Excel. Elle permet, le plus souvent, d'automatiser des traitements qui seraient trop lourds, en particulier lorsque vous avez à traiter beaucoup de données en même temps.

Voici le fonctionnement de la fonction SI:

=SI(question; faire_ceci_si_la_réponse_est_oui; faire_cela_si_la_réponse_est_non)
ou bien dit autrement : =SI(critère; critère vérifié; critère non_vérifié)

Syntaxe officielle : =SI(test_logique ; [valeur_si_vrai] ; [valeur_si_faux])

Bien que les deux derniers arguments soient optionnels, je vous conseille vivement de toujours prendre soin de les compléter. Cela sera plus simple :

- Le jour où vous relisez votre formule
- Si un de vos collègues essaie de comprendre votre formule

Deux exemples d'application :

1	Α	В	С	D	E	F	G
1	Nom du client	Type de produit	Prix unitaire	Qté	CA	Si CA > 1000, alors indiquer "Bon client", sinon, "Bof"	Si Quantité > ou égal 2, alors "Bravo", sinon laisser la cellule vide.
2	7 Bikes For 7 Brothers	Casques	53.90€	3	161.70€	Bof	Bravo
3	Against The Wind Bikes	VTT	425.00€	2	850.00€	Bof	Bravo
4	AIC Childrens	Casques	98.00€	12	1 176.00 €	Bon client	Bravo
5	Alley Cat Cycles	Gants	16.50€	1	16.50€	Bof	
6	Alley Cat Cycles	Gants	14.50 €	3	43.50 €	Bof	Bravo
7	Alley Cat Cycles	Hybride	539.85€	3	1 619.55 €	Bon client	Bravo
8	Alley Cat Cycles	VTT	726.61 €	1	726.61 €	Bof	
9	Alley Cat Cycles	Enfant	274.35€	1	274.35€	Bof	
10	Ankara Bicycle Company	VTT	479.85€	2	959.70€	Bof	Bravo
11	Arsenault et Maurier	Compétition	1 739.85 €	1	1 739.85 €	Bon client	
12	Aruba Sport	Compétition	2 939.85 €	2	5 879.70 €	Bon client	Bravo

Colonne F:

Ainsi, la traduction de la formule : =SI(E2>1000; "Bon client"; "Bof")

est : si le contenu de **E2 est supérieur à 1000**, alors, j'affiche **Bon client**, sinon j'affiche **Bof**.

Colonne G:

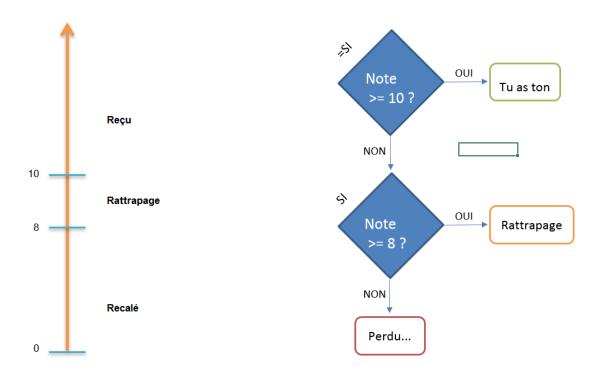
Ainsi, la traduction de la formule : =SI(D2>=2;"Bravo";"")

est : si le contenu de **D2 est supérieur à 2**, alors, j'affiche **Bravo**, sinon je laisse la cellule **vide**⁴.

⁴ Pour laisser une cellule vide, on utilise en effet deux guillemets tapés consécutivement, et sans espace : ""

SI(SI)

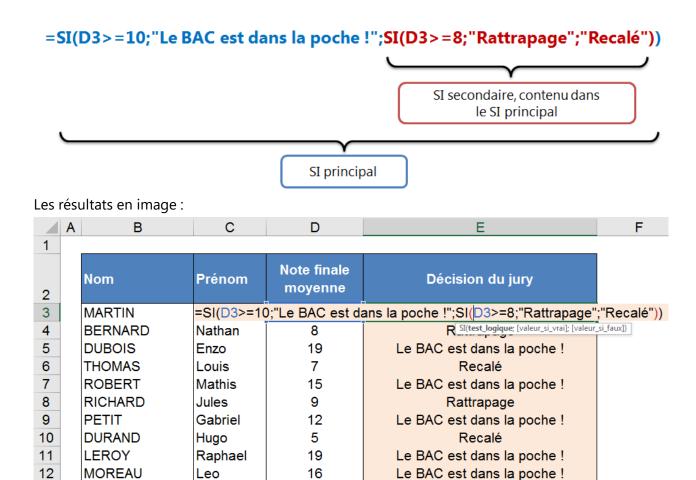
Parfois, il est nécessaire d'imbriquer plusieurs SI dans une seule formule, lorsque l'algorithme devient plus complexe. Dans le cas ci-dessous, je vous propose de distribuer automatiquement les résultats du BAC en fonction de la note finale obtenue par des élèves.



Voici un extrait de la Base de Données que vous devez traiter :

	АВ	С	D	E
1				
2	Nom	Prénom	Note finale moyenne	Décision du jury
3	MARTIN	Lucas	10	
4	BERNARD	Nathan	8	
5	DUBOIS	Enzo	19	
6 7	THOMAS	Louis	7	
	ROBERT	Mathis	15	
8	RICHARD	Jules	9	
9	PETIT	Gabriel	12	
10	DURAND	Hugo	5	
11	LEROY	Raphael	19	
12	MOREAU	Leo	16	

Pour bien comprendre le fonctionnement des SI imbriqués, vous devez retenir deux choses importantes :

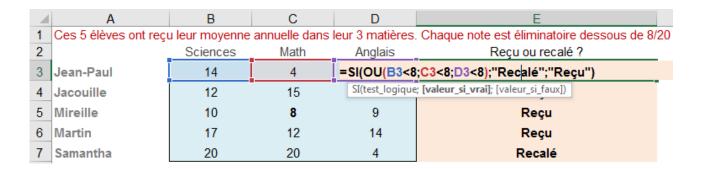

- Chaque fonction **SI** comporte toujours **3 arguments** (critère ; vrai ; faux)
- **N** x SI permet de choisir entre **N+1** portes de sortie (si votre algorithme permet **13** solutions différentes, vous devrez avoir **12** SI dans votre formule, etc.).

Construisez toujours au brouillon un logigramme afin de vous aider dans la rédaction.

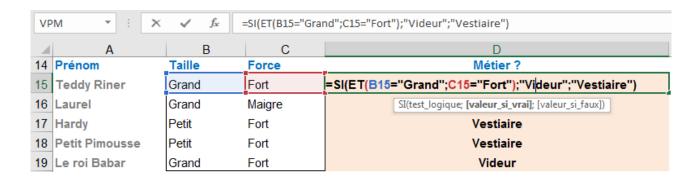
Dans notre cas, la fonction s'écrit maintenant facilement :

Un autre exemple d'application de la fonction SI:

SI(ET), SI(OU)


Nous venons d'utiliser la fonction SI avec un seul test logique. Parfois, il est utile de pouvoir formuler ce type de question : « Si la note en anglais est supérieure à 10 et si la note en mathématiques est supérieure à 10, alors, l'élève est reçu, sinon, il est recalé ».

Dans ces cas de questions multiples, on intégrera des ET ou des OU au moment d'écrire le test.


Syntaxe de SI(ET): =SI(ET(Ceci; Cela); Vrai; Faux) veut dire: Si Ceci est vrai et Cela evrai, alors, Vrai, sinon, Faux. Il faut que les 2 conditions soient vérifiées pour passer sur le Vrai de la fonction.

Syntaxe de SI(OU): =SI(OU(Ceci; Cela); Vrai; Faux) veut dire: Si Ceci est vrai ou Cela devrai, alors, Vrai, sinon, Faux. Il suffit qu'une seule des 2 conditions soient vérifiée pour passer sur le Vrai de la fonction.

Exemple 1 : système automatique d'attribution de passage en classe supérieure pour des élèves :

Exemple 2: système automatique d'attribution de métier en fonction de deux critères : dans notre exemple, il faut être à la fois grand et fort pour être videur ©

Résultat : Teddy Riner et le roi Babar sont bel et bien grands et forts ! 😊

Imbrication de fonctions SI, ET, OU

L'imbrication des fonctions dans Excel n'a pas vraiment de limite, et peut répondre à des questions assez complexes, pourvu que vous sachiez organiser logiquement la formule de calcul, tout en respectant scrupuleusement la syntaxe.

Exemples de questions qui peuvent trouver une réponse à travers une formulation Excel. Attardez-vous sur la structure de la formule Excel en fonction de la question posée. Demandez-vous s'il faut commencer par un ET ou un OU, car l'erreur est vite arrivée!

Dans toutes les fonctions ci-dessous, Vrai affichera 1 et Faux affichera 0.

```
Question 1 : combien de clients sont mariés et ont un seul enfant ?
=SI(ET(E4="Marié"; F4=1); 1; 0)
Question 2 : combien de clients sont célibataires ou divorcés ?
=SI(OU(E4="Célibataire"; E4="Divorcé"); 1; 0)
Question 3 : combien de clients sont mariés avec un revenu supérieur ou égal à 75 000?
=SI(ET(E4="Marié"; D4>=75000); 1; 0)
Question 4 : combien de clients sont des hommes, célibataires et sans enfants ?
=SI(ET(C4="Homme"; E4="Célibataire";F4=0) ; 1 ; 0)
Question 5: combien de clients sont des femmes avec 1 ou 2 enfants?
=SI(ET(C4="Femme"; OU(F4=1;F4=2)); 1; 0)
Question 6 : combien de clients sont mariés ou en concubinage, avec un revenu
supérieur ou équivalent à 50 000 et qui ont au moins 2 enfants?
=SI(ET(D4>50000;F4>=2;OU(E4="Marié";E4="Concubinage")); 1; 0)
```

FONCTIONS FINANCIERES

Les cinq variables de la finance

Dans le monde financier, on utilise à répétition cinq variables qui reviennent très souvent. Les voici ci-dessous. Lisez principalement la colonne de gauche, puisque nous travaillons avec Excel. Mais aussi, vous pouvez vous intéresser aux noms des variables sur une HP12C, qui n'est autre que la calculatrice probablement la plus répandue dans le monde de la finance, avec son fameux système de notation polonais.

NPM, VA, VC, VPM, et TAUX

Abréviation Excel	
Npm	0.0
(nombre de périodes o d'échéances d'un prêt)	
Va	_
(Valeur actuelle, Capita	ıl
emprunté dans un prêt	
bancaire)	
Vc	
(montant de trésorerie	
attendu après le dernie	r
versement, 0 si omis)	
Vpm	
(montant du	
remboursement pour	
chaque période)	
Taux	
(taux d'intérêt pour la	
période, en %)	

Abréviation HP12C	Signification
n	Durée (ou nombre de périodes)
PV	Present Value (Valeur actuelle)
FV	Futur Value (Valeur future)
PMT	Paiement (par période)
ı	Taux (ou rentabilité)

Si vous connaissez 4 des 5 variables, vous pourrez toujours trouver la valeur manquante. Et pour chaque variable manquant, Excel vous propose une fonction!

Mais avant de commencer à vous montrer comme elles fonctionnent avec des exemples concrets, regardons ensemble le fonctionnement général de ces 5 variables et ce qu'elles représentent exactement. En effet, elles servent aussi bien dans les calculs de **prêts bancaires**, que dans le monde de **l'assurance vie** par exemple :

Nom de la variable (Nom de la fonction)	Fonctionnement		
NPM	Nombre de périodes (années ou mois) pour un prêt bancaire. Durée d'un contrat d'Assurance Vie.		
VA	Montant du capital emprunté dans un prêt bancaire. Premier versement investi en Assurance Vie.		
VC	Montant restant à régler en fin de prêt (0). Capital en fin de contrat d'assurance Vie.		
VPM	Montant à rembourser à chaque période d'un prêt bancaire (négatif). Versement volontaire programmée d'un contrat d'Assurance Vie.		
TAUX	Taux d'un prêt bancaire en % par période. Rentabilité d'un contrat d'Assurance Vie ou d'un placement.		
Туре	0 pour fin de période, 1 pour début de période (0 si ignoré)		

Fonction VPM (montant à rembourser)

Utilité:

Détermine le montant mensuel d'un remboursement d'emprunt ou calcule le versement programmé (volontaire) dans un contrat d'assurance vie.

Exemple: combien devez-vous à la banque tous les mois, en contractant un prêt amortissable à taux fixe de 4% par an, lorsque vous empruntez 121 000 €, sur un total de 15 ans (180 mois) ?

	Α	В	С	D	E			
1	Calcul de Vpm (paiement programmé, ici mensuel)							
3		Variable	Données du prêt					
4		NPM	180	mois	Nombre de périodes (années ou mois) pour un prêt bancaire. Durée d'un contrat d'Assurance Vie.			
5		VA	-121 000	€	Montant du capital emprunté dans un prêt bancaire. Premier montant investi en Assurance Vie.			
6		VC	0	€	Montant restant à régler en fin de prêt (0). Capital en fin de contrat d'assurance Vie.			
7		VPM	inconnue	€	Montant à rembourser à chaque période d'un prêt bancaire (négatif), Versement volontaire programmée d'un contrat d'Assurance Vie			
8		TAUX	4.00%	/an	Taux d'un prêt bancaire en % par période. Rentabilité d'un contrat d'Assurance Vie ou d'un placement.			
9		Туре	0		0 pour fin de période, 1 pour début de période (0 si ignoré)			

Attention! Le montant que vous empruntez (**VA**) est **négatif**. En effet, vous devez cet argent à la banque. Cela revient donc à dire que vous l'avez dépensé, puisque vous le devez... Pour cette raison, cet argent « sort de votre poche » de doit être saisi en négatif. En cas d'oubli, le remboursement sera juste, mais négatif lui aussi. Il faut juste le savoir!

Ici, l'inconnue est **VPM**. La fonction à utiliser est tout simplement =**VPM**.

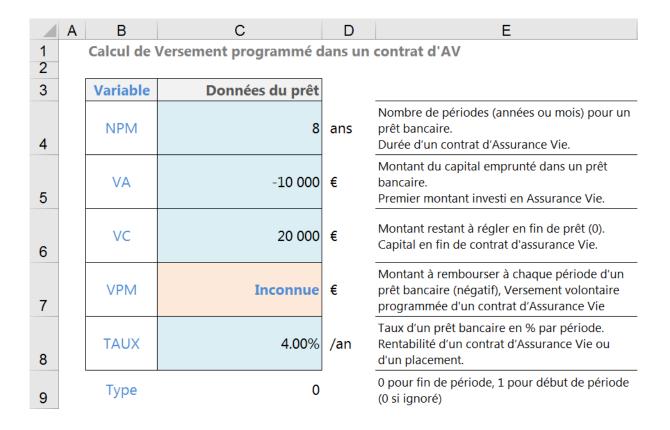
Syntaxe : =VPM(taux ; npm ; va ; [vc] ; [type])

Le taux doit être mensuel, dont 4% / 12 mois, donc on écrit C8/12!

=VPM(C8/12;C4;C5;C6;C9)

Solution dans notre cas:

Résultat chiffré : 895.02 € / mois



Fonction VPM (versement programmé)

Utilité:

Calcule un capital constitué à terme ou revalorise un montant sur une durée donnée.

Exemple: vous ouvrez un contrat d'Assurance Vie. Vous prévoyez une rentabilité pour votre placement de 4% par an. Vous faîtes une versement initial unique de 10 000 € (vous payez, souvenez-vous, donc chiffre à saisir en négatif). Vous aimeriez qu'au bout de 8 ans (96 mois), te montant ai doublé, soit 20 000 €. Question: combien devez-vous mettre de votre poche tous les mois pour y arriver?

Ici, l'inconnue est à nouveau **VPM**. La fonction à utiliser est =**VPM**.

Syntaxe: =VPM(taux; npm; va; [vc]; [type])

Le **type** pointe en **C9**, soit **0** (fin de période, du coup cet argument pourrait être ignoré).

Attention, les 8 ans (C4) doivent être multipliés par 12 pour obtenir un nombre de mois, car tous les arguments doivent être basés sur les mêmes unités!

Solution dans notre cas:

=VPM(C8/12;C4*12;C5;C6;C9)

Résultat chiffré : -55,23 € / mois, donc vous devez dépenser cette somme tous les mis(versement).

Fonction VC (capital constitué)

Utilité:

Trouve le capital empruntable en fonction des 4 autres variables.

Exemple: vous ouvrez un contrat d'Assurance Vie. Vous prévoyez une rentabilité pour votre placement de 4% par an. Vous faîtes une versement initial unique de 10 000 € (vous payez, souvenez-vous, donc chiffre à saisir en négatif). Vous décidez volontairement d'ajouter 43,27 € teles mois (pourquoi pas !). Question : au bout de 8 ans (96 mois), de combien disposerez-vous savotre contrat ?

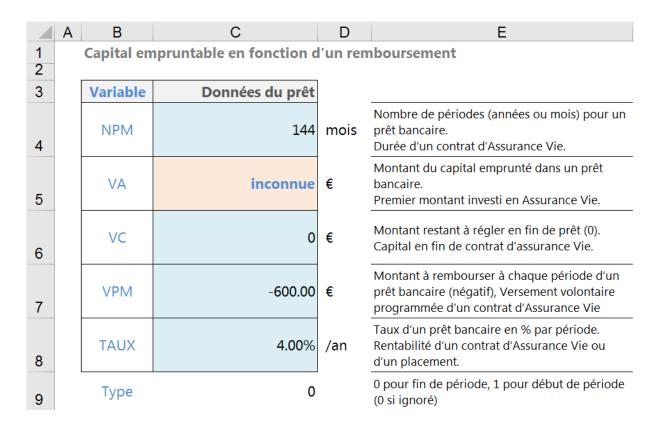
	Α	В	С	D	E				
1	Calcul du capital constitué à terme dans un contrat d'AV								
3		Variable	Données du prêt						
4		NPM	96	mois	Nombre de périodes (années ou mois) pour un prêt bancaire. Durée d'un contrat d'Assurance Vie.				
5		VA	-10 000	€	Montant du capital emprunté dans un prêt bancaire. Premier montant investi en Assurance Vie.				
6		VC	inconnue	€	Montant restant à régler en fin de prêt (0). Capital en fin de contrat d'assurance Vie.				
7		VPM	-43.27	€	Montant à rembourser à chaque période d'un prêt bancaire (négatif), Versement volontaire programmée d'un contrat d'Assurance Vie				
8		TAUX	4.00%	/an	Taux d'un prêt bancaire en % par période. Rentabilité d'un contrat d'Assurance Vie ou d'un placement.				
9		Туре	0		0 pour fin de période, 1 pour début de période (0 si ignoré)				

Ici, l'inconnue est **VC**. La fonction à utiliser est **=VC**.

Syntaxe : =VC(taux ; npm ; vpm ; va ; [type])

Le **type** pointe en **C9**, soit **0** (fin de période, du coup cet argument pourrait être ignoré). Solution dans notre cas : = VC(C8/12;C4;C7;C5;C9)

Résultat chiffré : -18 649,47 €, c'est le montant dont vous disposerez danse 8 ans.



Fonction VA (capital empruntable)

Utilité:

Calcule le montant du capital à emprunter pour un prêt bancaire ou le versement initial pour un contrat d'Assurance Vie.

Exemple: vous souhaitez acheter un bien immobilier, et vous vous interrogez sur votre capacité d'emprunt. Vous savez que vous pouvez rembourser au maximum 600 € / mois, vous n'avez amapport. Les taux actuels sont autour de 4% et vous estimez que 12 années (144 mois) serait une bonne durée de remboursement. Question : combien pouvez-vous emprunter ?

Ici, l'inconnue est **VA**. La fonction à utiliser est =**VA**.

Syntaxe: =VA(taux; npm; vpm; [vc]; [type])

VPM est négatif : en effet, vous payez de votre poche les 600 € par mois à la banque.

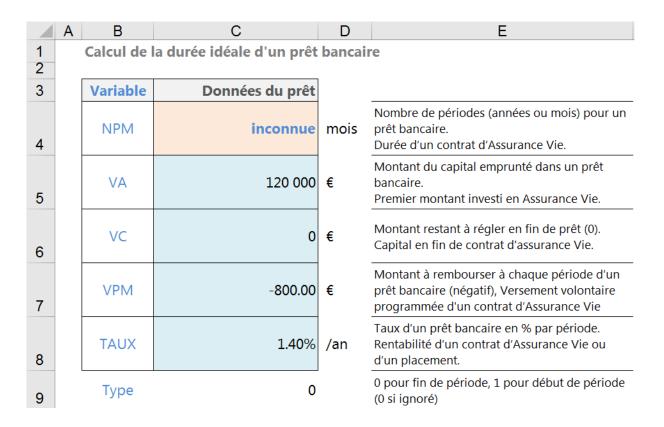
VC est à zéro : vous devrez en effet avoir remboursé la totalité des échéances en fin de prêt.

TAUX doit être divisé par 12, pour que toutes les variables soient « par mois ».

Type a été ignoré (=0), car on rembourse en fin de période, donc ici à la fin de chaque mois. Solution

dans notre cas : =VA(C8/12;C4;C7;C6)

Résultat chiffré : **68 530,05 €**, c'est le montant que vous pouvez emprunter dans ces conditions. Remarque : si vous passez le taux à 1,3%, votre capacité d'emprunt monte à presque 80 000 €!



Fonction NPM (durée d'un prêt bancaire)

Utilité:

Calcule la durée idéale d'un prêt bancaire. Renvoie le nombre de paiements (mensuel ou annuel, selon les unités choisies pour vos variables).

Exemple: vous souhaitez acheter un bien immobilier en empruntant 120 000 €, et vous vous interrogez sur la durée de remboursement. Vous savez que vous pouvez rembourser au maximum 800 € / mois, vous n'avez aucun apport. Les taux actuels sont à 1,4%. Quelle serait la durée de vœ prêt bancaire dans ces conditions ?

Ici, l'inconnue est **NPM**. La fonction à utiliser est simplement = **NPM**.

Syntaxe : =VPM(taux ; vpm ; va ; [vc] ; [type])

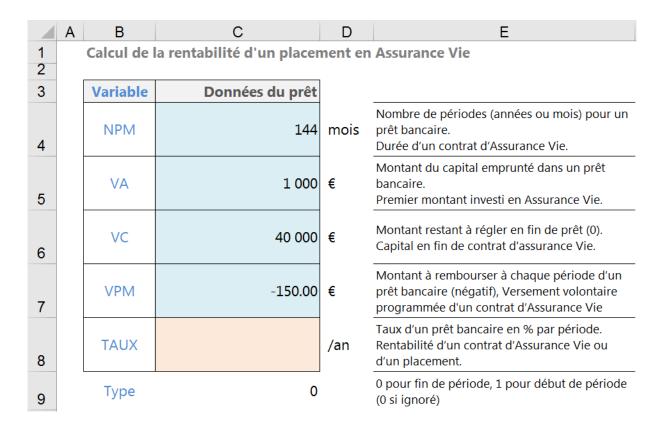
TAUX doit être divisé par 12, pour que toutes les variables soient « par mois ».

Type a été ignoré (=0), car on rembourse en fin de période, donc ici à la fin de chaque mois.

Solution dans notre cas : = NPM(C8/12;C7;C5;C6) / 12

Le résultat final représente des mois. Il faut le diviser par 12 pour obtenir des années.

Résultat chiffré : 14 ans, c'est la durée de remboursement de votre prêt bancaire.



Fonction TAUX (rentabilité d'un placement)

Utilité:

Calcule la rentabilité d'un placement.

Exemple: vous avez ouvert un contrat d'Assurance Vie il y a 12 ans (144 mois). Vous aviez, àl'époque, effectué un versement initial de 1 000 €. Vous avez, pour chacun des 144 mois passés, effectué un versement volontaire de 150 € / mois. Quelle est la rentabilité globale de votre placement (le résultat est attendu en %).

Ici, l'inconnue est **TAUX**. La fonction à utiliser est **=TAUX**. La syntaxe diffère légèrement :

Syntaxe : =TAUX(taux ; vpm ; va ; [vc] ; [type] ; [estimation])

VPM est négatif : en effet, vous payez de votre poche les 600 € par mois à la banque. **VC** es à zéro : vous devrez en effet avoir remboursé la totalité des échéances en fin de prêt. **Type** a été ignoré (=0), car on rembourse en fin de période, donc ici à la fin de chaque mois.

Estimation est votre estimation du taux; si omise, Estimation = 0,1 (10 %).

Ignorez cet argument.

Solution dans notre cas : =TAUX(C4;C7;C5;C6;C9)

Résultat chiffré : 0,89 % / mois, soit 11 % / an, c'est la rentabilité interne de votre placement sur la période (autant dire qu'elle est excellente... dans la vraie vie, ce chiffre peut être très différent)

Exercice à faire chez vous

Voici, pour conclure et mettre en application vos travaux sur les formules financières, un petit problème à résoudre entièrement seul(e).

Cette fois, vous devez trouver le nom de chaque variable, celle qu'il faut trouver, et la bonne formule à utiliser pour arriver à vos fins.

Bonne chance, l'énoncé est réduit à sa plus simple expression, une phrase en français!

Vous investissez un montant de 5 000 € dans un fonds de placement.

Ce fonds rapporte 12% par an (incroyable non ?!).

Vous ne faîtes aucun apport régulier de votre poche, et vous attendez sagement que le temps passe...

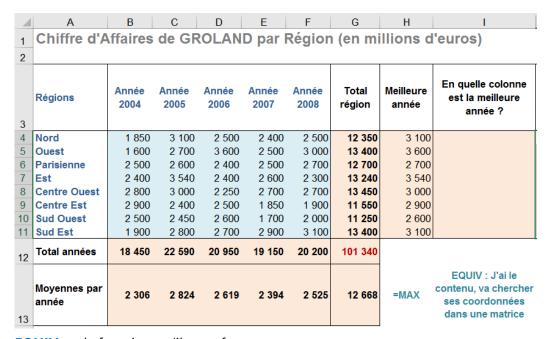
Combien avez-vous sur votre fonds de placement 10 ans plus tard?

Solution (tournez la tête pour la mériter \bigcirc):

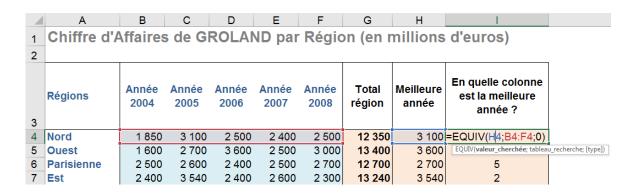
3	О	Э	8	A	r
		sinatinoM	èlutitnI		7
Nombre de périodes (années ou mois) pour un prêt bancaire. Durée d'un contrat d'Assurance Vie.	sue	ОТ	Durée		3
Montant du capital emprunté dans un prêt bancaire. Premier montant investi en Assurance Vie.	€	000 S-	Valeur investie		†
Montant restant à régler en fin de prêt (0). Capital en fin de contrat d'assurance Vie.	€	=\\C(\cd\:C3\:C8\:C6\\	Valeur future		9
Montant à rembourser à chaque période d'un prêt bancaire (négatif), Versement volontaire programmée d'un contrat d'Assurance Vie	€	00.0	Ce que je mets de ma siom sel suot, edopod		9
Taux d'un prêt bancaire en % par période. Rentabilité d'un contrat d'Assurance Vie ou d'un placement.	ue/	%00'ZI	XusT		L

Excel perfectionnement : Fonctions – Droits réservés ENCLR © 2021–2024

FONCTIONS MATHEMATIQUES & STATISTIQUES


Fonctions Equiv et Index

EQUIV


La fonction EQUIV recherche un élément spécifique dans une plage de cellules, puis renvoie la position relative de l'élément dans la plage. Par exemple, si la plage A1:A3 contient les valeurs 5, 25 et 38, la formule = EQUIV(25;A1:A3;0) renvoie le chiffre 2 étant donné que 25 est le deuxième élément dans la plage.

Syntaxe : = EQUIV(valeur_cherchée ; matrice_recherche ; [type])

Premier temps: vous avez en colonne H renvoyé la plus grande valeur de chaque région avec la fonction =MAX. Mais en colonne I, vous souhaiteriez aussi savoir en quelle année était ce plus grand chiffre d'affaires! (dans la plage B3:F3, de quelle année s'agit-il?).

EQUIV est la fonction qu'il nous faut :

EQUIV va chercher à savoir où se trouve **H4** (3100) dans la plage **B4:F4**. Laissez 0 en 3^{ème} argument. Elle va renvoyer le chiffre 2 car 3100 est situé à la 2ème position dans la matrice rouge.

INDEX

INDEX permet de ramener le contenu d'une cellule d'une matrice, dès lors que vous êtes capable de fournir les coordonnées de cette cellule dans la matrice (un peu comme un jeu de bataille navale).

Syntaxe:

=INDEX(matrice; n°_de_ligne; n°_de_colonne)

Deuxième temps : maintenant que nous savons quelle est la position de 3100 dans la matrice rouge (région Nord), Nous pouvons utiliser INDEX afin de découvrir, dans la plage des années, à quelle année correspond ce chiffre de 3100.

	Α	В	С	D	E	F	G	Н	1	J
1	Chiffre d'Affaires de GROLAND par Région (en millions d'euros)									
2	2									
3	Régions	Année 2004	Année 2005	Année 2006	Année 2007	Année 2008	Total région	Meilleure année	En quelle colonne est la meilleure année ?	Quelle est la meilleure année ?
4	Nord	1 850	3 100	2 500	2 400	2 500	12 350	3 100	2	=INDEX(\$B\$3:\$F\$3;I4)
5	Ouest	1 600	2 700	3 600	2 500	3 000	13 400	3 600	3	INDEX(matrice; no_lig; [no_col]) INDEX(réf; no_lig; [no_col]; [no_zone])
6	Parisienne	2 500	2 600	2 400	2 500	2 700	12 700	2 700	5	Annee 2008
7	Est	2 400	3 540	2 400	2 600	2 300	13 240	3 540	2	Année 2005
8	Centre Ouest	2 800	3 000	2 250	2 700	2 700	13 450	3 000	2	Année 2005
9	Centre Est	2 900	2 400	2 500	1 850	1 900	11 550	2 900	1	Année 2004
10	Sud Ouest	2 500	2 450	2 600	1 700	2 000	11 250	2 600	3	Année 2006
11	Sud Est	1 900	2 800	2 700	2 900	3 100	13 400	3 100	5	Année 2008
12	Total années	18 450	22 590	20 950	19 150	20 200	101 340			
13	Moyennes par année	2 306	2 824	2 619	2 394	2 525	12 668	=MAX	EQUIV : J'ai le contenu, va chercher ses coordonnées dans une matrice	INDEX : j'ai les coordonnées, va chercher le contenu de la cellule

$=INDEX($B$3:$F$3;I4)^5$

INDEX va scanner la matrice (bleue) des années, de gauche à droite, et va s'arrêter à la 2ème position (car 14 contient le chiffre 2). La formule renvoie donc le contenu de la cellule C3, qui metautre que « Année 2005 ».

Bravo! Nous savons enfin quelle est l'année qui a obtenu le plus grand chiffre d'affaires.

⁵ Avec une unique formule: =INDEX(\$B\$3:\$F\$3;EQUIV(MAX(B4:F4);B4:F4;0)), on gagne deux colonnes ©

Fonctions mathématiques simples

Principales fonctions mathématiques

Fonctions courantes

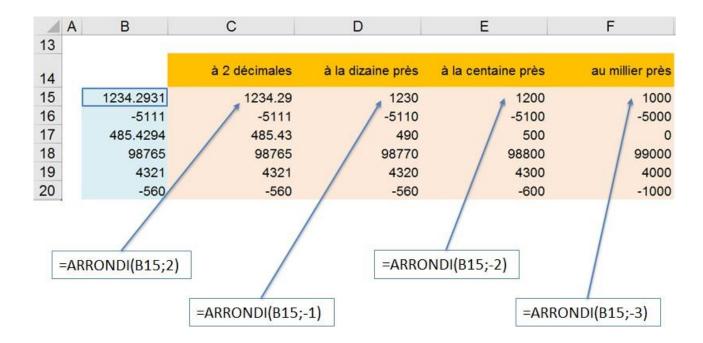
ABS(nombre)	Cette méthode renvoie la valeur absolue d'un nombre, il renvoie donc le nombre s'il est positif, son opposé (positif) s'il est négatif				
ENT(nombre)	Renvoie la partie entière d'un nombre				
PAIR(valeur)	Cette méthode renvoie la valeur paire la plus proche du nombre entré en paramètre.				
IMPAIR(nombre)	Cette méthode renvoie la valeur entière impaire la plus proche du nombre entré en paramètre.				
PRODUIT(valeur1; valeur2;)	Cette méthode renvoie le produit de la multiplication des valeurs entrées en paramètre.				
SOMME(valeur1; valeur2;)	Cette méthode renvoie la somme des valeurs entrées en paramètre.				
SOMME.CARRES(valeur1; valeur2;)	Cette méthode renvoie la somme des carrés des valeurs entrées en paramètre.				
ARRONDI(valeur; nombre)	Arrondit la valeur donnée en paramètre au nombre de chiffres indiqué en paramètre. Si la partie décimale de la valeur entrée en paramètre vaut 0.5, la méthode <i>Math()</i> arrondi à l'entier supérieur.				
ARRONDI.INF(valeur; nombre)	Arrondit la valeur donnée en paramètre à la valeur inférieure avec le nombre de chiffres indiqué en paramètre.				
ARRONDI.SUP(valeur; nombre)	Arrondit la valeur donnée en paramètre à la valeur supérieure avec le nombre de chiffres indiqué en paramètre.				
MAX(Nombre1; Nombre2)	MAX() renvoie la plus grande des valeurs données en paramètre				
MIN(Nombre1; Nombre2)	Retourne la plus petite des valeurs données en paramètre				
PUISSANCE(Valeur1; Valeur2)	Retourne le nombre Valeur1 à la puissance Valeur2				
ALEA()	La méthode ALEA() renvoie un nombre pseudo-aléatoire compris entre 0 et 1. La valeur est générée à partir des données de l'horloge de l'ordinateur.				
RACINE(Valeur)	Renvoie la racine carrée du nombre passé en paramètre				

Fonctions trigonométriques

PI()	Retourne la valeur du nombre PI (environ 3.1415927) avec une précision de 15 chiffres
SIN(valeur)	Retourne le sinus de la valeur entrée en paramètre (doit être donnée en radians). La valeur retournée est comprise dans l'intervalle [-1;1].
ASIN(valeur)	Retourne l'arcsinus de la valeur entrée en paramètre. La valeur doit être comprise dans l'intervalle [-1;1]. Dans le cas contraire, la méthode ASIN() renvoie la valeur NaN (Not a Number).
SINH(valeur)	Retourne le sinus hyperbolique de la valeur entrée en paramètre.
ASINH(valeur)	Retourne l'arcsinus hyperbolique de la valeur entrée en paramètre.
COS(valeur)	Retourne le cosinus de la valeur entrée en paramètre (doit être donnée en radians). La valeur retournée est comprise dans l'intervalle [-1;1].
ACOS(valeur)	Retourne l'arccosinus de la valeur entrée en paramètre. La valeur doit être comprise dans l'intervalle [-1;1]. Dans le cas contraire, la méthode acos() renvoie la valeur NaN (Not a Number).
COSH(valeur) Retourne le cosinus hyperbolique de la valeur entrée paramètre (doit être donnée en radians). La valeur recomprise dans l'intervalle [-1;1].	
ACOSH(valeur)	Retourne l'arccosinus hyperbolique de la valeur entrée en paramètre. La valeur doit être comprise dans l'intervalle [-1;1]. Dans le cas contraire, la méthode acos() renvoie la valeur NaN (Not a Number).
TAN(valeur)	Retourne la tangente de la valeur entrée en paramètre (doit être donnée en radians)
ATAN(valeur)	Retourne l'arctangente de la valeur entrée en paramètre. La valeur doit être comprise dans l'intervalle [-1;1]. Dans le cas contraire, la méthode atan() renvoie la valeur NaN (Not a Number).
TANH(valeur)	Retourne la tangente hyperbolique de la valeur entrée en paramètre.
ATANH(valeur)	Retourne l'arctangente hyperbolique de la valeur entrée en paramètre.
DEGRES(valeur)	convertit la valeur entrée en paramètre en degrés. La valeur donnée en paramètre doit être exprimée en radians.
RADIANS(valeur)	convertit la valeur entrée en paramètre en radians. La valeur donnée en paramètre doit être exprimée en degrés.

Fonctions logarithmiques et exponentielles

EXP(valeur)	Cette méthode renvoie l'exponentielle de la valeur entrée en paramètre.
FACT(valeur) Renvoie la factorielle de l'entier entré en paramètre (1 * 2 ° valeur).	
LN(valeur)	La méthode <i>LN()</i> renvoie le logarithme népérien de la valeur entrée en paramètre.
La méthode <i>LOG()</i> renvoie le logarithme de la valeur e paramètre.	
LOG10(valeur)	La méthode <i>LOG()</i> renvoie le logarithme en base 10 de la valeur entrée en paramètre.

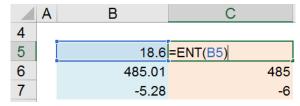

ARRONDI

La fonction **ARRONDI** renvoie la valeur arrondie d'un nombre.

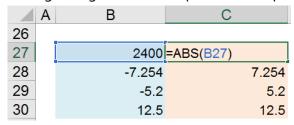
Syntaxe : = ARRONDI(nombre ; nombre_de_chiffres). Le nombre de chiffre peut être positif ou négatif.

Exemple 1 : en cas d'arrondi positif, le chiffre perd de la précision dans les décimales. L'arrondi à **2 chiffres** de 1234,2931 donne donc 1234,29. La valeur est bien modifiée, cela n'est pas un affichage à l'écran issu d'un formatage de cellule spécifique.

Exemple 2: en cas d'arrondi négatif, le chiffre perd de la précision dans les unités, centaines, milliers, etc. L'arrondi à **-2 chiffres** de 1234 donne donc 1200. La valeur est bien modifiée, cela n'est pas un affichage à l'écran issu d'un formatage de cellule spécifique.



ENT et ABS


ENT

La fonction **ENT** renvoie la partie entière d'un nombre, donc nettoyé de ses décimales. Exemple :

ABS

La fonction **ABS** renvoie la valeur absolue d'un nombre, ce qui signifie que le nombre revient sans son signe négatif, s'il en est pourvu. Exemple :

ALEA et ALEA.ENTRE.BORNES

ALEA peut vous servir à générer des échantillons de données chiffrées aléatoires, à des fins de simulation ou d'expérimentation par exemple.

Syntaxes:

- =ALEA() renvoie un chiffre aléatoire compris par défaut entre 0 et 1
- =ALEA()*1000 renvoie un chiffre aléatoire compris par défaut entre 0 et 1000

Une alternative vous permet de générer un nombre entre deux bornes que vous définirez

=ALEA.ENTRE.BORNES(min; max) renvoie un chiffre aléatoire compris par défaut entre min et max et 1000

	Α	В	С	D	E	F	G	Н	I
4									
5	950	843	923	618	790	694	825	607	788
6	619	876	=ALEA.E	NTRE.B	ORNES(500;100	0)	973	888
7	662	548	574	641	757	646	754	667	602
8	501	744	606	663	746	922	626	512	956

Une fois ces formules recopiées dans un tableau, elles renvoient toutes un nombre aléatoire. Mais à chaque fois que vous rouvrirez votre classeur ou que vous taperez sur la touche **F9**, les valeurs seront recalculées. Aussi, si vous souhaitez conserver un échantillon

valeur à un autre emplacement.

de données intact, vous devez le Copier puis faire Clic Droit / Coller

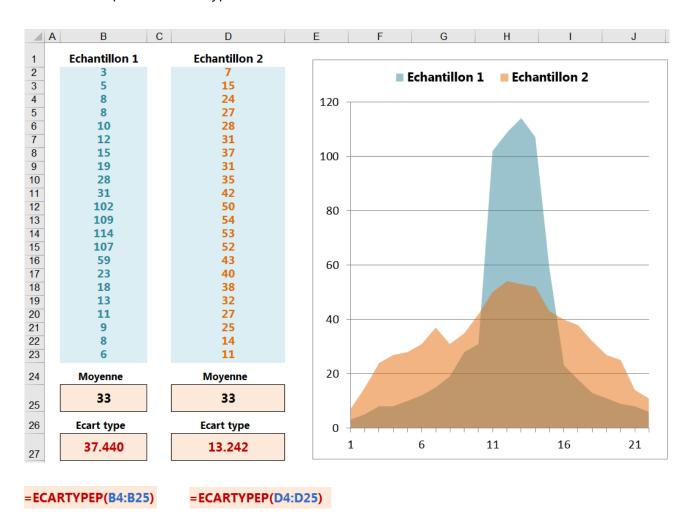
Fonctions statistiques

Principales fonctions statistiques

A titre informatif, voici un extrait de quelques fonctions statistiques que vous offre Excel, classées par ordre alphabétique. Consultez la <u>liste complète depuis le site Microsoft</u>.

Fonction (avec lien)	Description
DROITEREG	Renvoie les paramètres d'une tendance linéaire.
ECARTYPE.STANDARD	Évalue l'écart type d'une population en se basant sur un échantillon de cette population.
EQUATION.RANG	Renvoie le rang d'un nombre contenu dans une liste.
FREQUENCE	Calcule la fréquence d'apparition des valeurs dans une plage de valeurs, puis renvoie des nombres sous forme de matrice verticale.
<u>GRANDE.VALEUR</u>	Renvoie la k ^{ième} plus grande valeur d'un jeu de données.
MAX	Renvoie la valeur maximale contenue dans une liste d'arguments.
MAX.SI	Renvoie la valeur maximale parmi les cellules spécifiées par un ensemble de conditions ou critères.
MEDIANE	Renvoie la valeur médiane des nombres donnés.
MIN	Renvoie la valeur minimale contenue dans une liste d'arguments.
<u>MOYENNE</u>	Renvoie la moyenne de ses arguments.
MOYENNE.SI	Renvoie la moyenne (arithmétique) de toutes les cellules dre plage qui répondent à des critères donnés.
MOYENNE.SI.ENS	Renvoie la moyenne (arithmétique) de toutes les cellules de répondent à plusieurs critères.
<u>NB</u>	Détermine les nombres compris dans la liste des arguments.
NB.SI	Compte le nombre de cellules qui répondent à un critère donné dans une plage.
NB.SI.ENS	Compte le nombre de cellules à l'intérieur d'une plage qui répondent à plusieurs critères.
NB.VIDE	Compte le nombre de cellules vides dans une plage.
NBVAL	Détermine le nombre de valeurs comprises dans la liste des arguments.
PETITE.VALEUR	Renvoie la k ^{ième} plus petite valeur d'une série de données.
PREVISION	Calcule une valeur par rapport à une tendance linéaire.

ECARTYPE, ECARTYPEP


Mesure de dispersion dans une population de données chiffrées. En d'autres termes, **ECARTYPE** mesure le niveau de dispersion des valeurs par rapport à la moyenne. Ainsi, la moyenne (arithmétique) de deux échantillons chiffrés peut être la même, alors que leurs écart types sont différents.

- Plus l'écart type est faible, plus les valeurs sont regroupées autour d'une valeur moyenne
- Plus l'écart type est **grand**, plus les valeurs sont **dispersées** autour d'une valeur moyenne

La fonction **ECARTYPE** calcule l'écart type d'une population en utilisant un échantillon. Vous préférerez utiliser la fonction **ECARTYPEP**, qui, elle, calcule l'écart type sur une population entière, en ignorant d'éventuels textes.

Syntaxe: =ECARTYPEP(B4:B25) ou bien =ECARTYPEP(A1; A2; A3;; A255)

L'exemple ci-dessous montre que la moyenne (arithmétique) de deux échantillons chiffrés peut **ê** a même, alors que leurs écart types sont différents :

A noter : la fonction **ECART.MOYEN(plage)** renvoie l'écart moyen pour la plage : c'est la mogmedes écarts par rapport à la moyenne arithmétique de l'ensemble des données.

FRÉQUENCE

La fonction **FREQUENCE** calcule la fréquence d'apparition de valeurs dans une plage de valeurs.

Attention. FREQUENCE fait partie des fonctions dîtes matricielles. Les fonctions matricielles ont deux particularités. La première : vous aurez en général à sélectionner plusieurs cellules avant de taper votre fonction. Cela est très

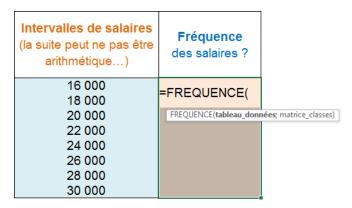
inhabituel n'est-ce pas ? La deuxième originalité est que vous devrez **valider votre fonction**, non pas avec la touche Entrée, mais en effectuant la combinaison de touches **CTRL** + **MAJ** + **Entrée**. Les fonctions matricielles, une fois tapées et validées, sont encadrées, dans la barre de formule, par des accolades, vous les reconnaîtrez donc facilement :

Syntaxe: = FREQUENCE(Tableau_données; matrice_classes)

- Le premier argument, Tableau_données, est la plage dans laquelle sont rangées toutes vos données.
- Le deuxième argument, **matrice_classes**, est la matrice qui contient vos intervalles de valeurs.

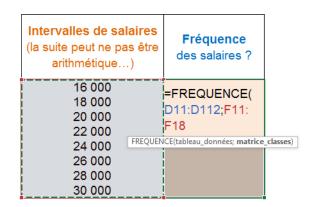
Exemple: vous possédez une liste de tous les départements français, avec le salaire moyen pour chaque département. Les salaires moyens varient de 17 185 € à 30 538 €, en fonction du département.

Extraits de votre base de salaires moyens par département : la colonne à fond bleu est votre **Tableau données** :

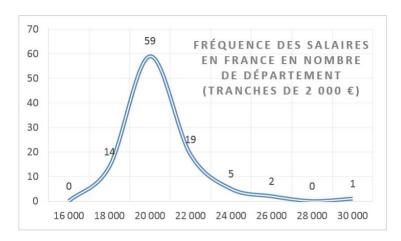

Numéro dépt.	Département	Moyenne
01	Ain	19 701
02	Aisne	18 698
03	Allier	18 334
04	Alpes-de-Haute-Provence	18 223
05	Hautes-Alpes	17 185
06	Alpes-Maritimes	20 434
07	Ardèche	18 035
08	Ardennes	18 557
09	Ariège	17 656
10	Aube	18 820
11	Aude	17 480
12	Aveyron	17 905
13	Bouches-du-Rhône	20 873
14	Calvados	19 289
15	Cantal	17 613
16	Charente	18 709
17	Charente-Maritime	18 216
18	Cher	19 172
19	Corrèze	18 511
2A	Corse-du-Sud 18 67	
2B	Haute-Corse 18 034	
21	Côte-d'Or	20 080

22	Côtes-d'Armor	18 433
23	Creuse	17 890
24	Dordogne	17 854
25	Doubs	19 157
26	Drôme	18 749
27	Eure	20 185
28	Eure-et-Loir	20 341
29	Finistère	19 186
30	Gard	18 920
31	Haute-Garonne	21 708
32	Gers	18 253
33	Gironde	20 732
34	Hérault	19 221
35	Ille-et-Vilaine	19 918
36	Indre	18 191
37	Indre-et-Loire	19 997
38	Isère	20 805
39	Jura	18 397
40	Landes	18 378
41	Loir-et-Cher	19 169
42	Loire	18 861
43	Haute-Loire	17 790
44	Loire-Atlantique	20 151

Pour réaliser votre fonction FREQUENCE, il vous mangue la matrice d'intervalles.


Vous souhaitez connaître à quelle fréquence apparaissent ces salaires moyens, dans des intervalles de 2 000 € par exemple. Vous commencez par construire votre matrice :

La plage à fond bleu sera votre matrice_classes. Elle indique vos intervalles de recherche.


La plage à fond saumon attend votre fonction **FREQUENCE**. **Attention**. avant de commencer à taper votre fonction, sélectionnez entièrement la plage à fond saumon! Puis, tapez votre fonction:

Numéro dépt.	Département	Moyenne
01	Ain	19 701
02	Aisne	18 698
03	Allier	18 334
04	Alpes-de-Haute-Provence	18 223
05	Hautes-Alpes	17 185
06	Alpes-Maritimes	20 434
07	Ardèche	18 035
08	Ardennes	18 557

Validez en tapant la combinaison de touches CTRL + MAJ + Entrée.

Intervalles de salaires (la suite peut ne pas être arithmétique)	Fréquence des salaires ?
16 000	0
18 000	14
20 000	59
22 000	19
24 000	5
26 000	2
28 000	0
30 000	1

Tiens donc, une courbe de Gauss ? En tous cas, 59 départements sur 100 possèdent un salaire moyen autour de 20 000 euros. Mais c'est toujours plus clair avec un graphique !

COMBIN

Permet de calculer le nombre de combinaisons de k dans un total de n. Exemple simple, le tirage du loto. On tire 6 boules (k=6) dans un total dn boules (n=49).

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Ici, l'ordre n'a pas d'importance, on fait appel à la fonction COMBIN.

Syntaxe: = COMBIN(nbre_éléments; nbre_éléments_choisis)

Dans le cas du loto, cela revient à écrire = COMBIN(n; k), ou encore, ici, = COMBIN(49; 6)

	Α	В	С	D	Е	F	G
1							
2		Jeux	tirage de K	parmi N		Combinaisons	
3		Tirer 2 billes dans un sac de 10 billes	2	10		45	
4		Tirage du Loto	6	49		=COMBIN(D4;C4)	
5				COMPIN/nomb	ro álá	ments; nb_éléments_ch	noisis)
6				COMBININOMB	re_ele	ments, no_elements_cr	IOISIS)

Les résultats confirment que vos chances sont minces de gagner au Loto : une chance sur un total de 13 983 816... combinaisons.

DROITEREG

La fonction DROITREG permet de fournir l'équation d'une droite affine (donc linéaire, de type ¥AX + B), en s'appuyant sur un lot de valeurs X et Y existants. Attention, c'est aussi une fonction matricielle!

Afin d'en expliquer son fonctionnement, je vous propose un exercice amusant. Vous êtes gérant d'une petite plage privée, sur laquelle vous disposez de transats et d'un bar de plage.

Vous avez relevé, au cours des 15 premiers jours du mois d'août, le nombre de transats loués et le chiffre d'affaires du bar.

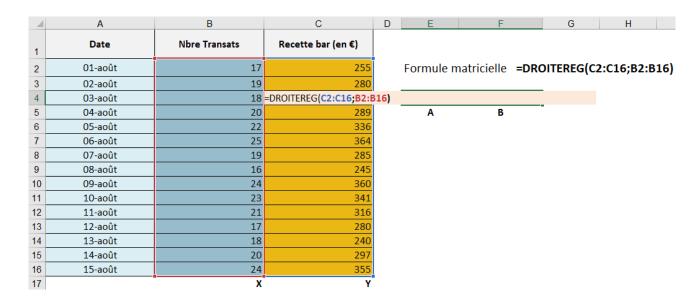
Voici le tableau, qui n'est autre que le relevé de vos observations :

	Α	В	С
1	Date	Nbre Transats	Recette bar (en €)
2	01-août	17	255
3	02-août	19	280
4	03-août	18	274
5	04-août	20	289
6	05-août	22	336
7	06-août	25	364
8	07-août	19	285
9	08-août	16	245
10	09-août	24	360
11	10-août	23	341
12	11-août	21	316
13	12-août	17	280
14	13-août	18	240
15	14-août	20	297
16	15-août	24	355
17		Х	Υ

On note **X** le nombre de transats, et **Y** le chiffre d'affaires.

La question que vous vous posez est simple : si vous augmentez le nombre de transats, aurez-vous une augmentation à peu près proportionnelle de votre chiffre d'affaires ?

La réponse viendra si vous réussissez à tracer une droite de régression linéaire, qui soit la plus représentative possible de l'équation : Nombre de transats / Chiffre d'affaires.


Vous utilisez donc la fonction **DROITEREG**. Elle permet, avec des X et des Y connus, de renvoyer A et B, telle que Y = AX + B. A et B sont donc attendus. Il sera donc nécessaire de **sélectionner 2 cellules** avant de rédiger votre fonction,

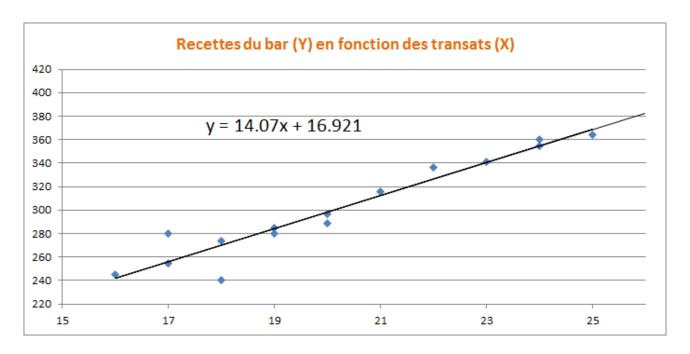
Syntaxe: = DROITEREG(y_connus; [x_connus], [constante], [statistiques])

Pour des raisons de simplification, vous n'utiliserez en général que les deux premiers arguments.

Dans votre cas, la fonction devient alors : =DROITEREG(C2:C16; B2:B16).

Bien sûr, n'oubliez pas de valider avec la combinaison de touches CTRL + MAJ + Entrée!Le

résultat des valeurs de A et B s'affichent alors : A vaut 14 et B vaut 17.



L'équation de la droite de régression linéaire (droite affine) est donc :

Vous pouvez l'utiliser pour créer un graphique, qui sera plus lisible qu'une série de données.

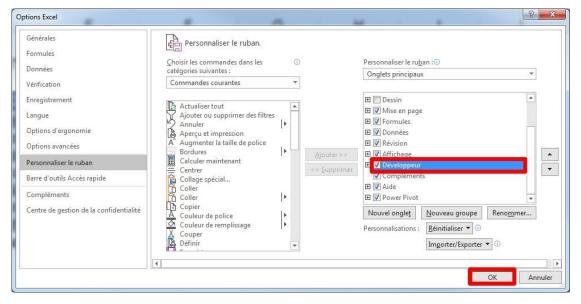
Un graphique, en effet, montrera plus concrètement la corrélation, qui ici est excellente. On appelle les « résidus » les distances verticales des points à la droite, et ils sont ici d'assez faibles valeurs.

Conclusion: bravo, vous pouvez augmenter le nombre de vos transats!

AUTOMATISER DES TACHES AVEC L'ENREGISTREUR DE MACRO-COMMANDES

Nous ne traitons ici que d'une initiation aux macro-commandes. Nous allons voir ensemble comment enregistrer une série d'actions que vous jugez trop répétitives, de manière à pouvoir « rejouer » à l'identique, plus tard, cette même série de manipulations. Nous appelons cela une macro à l'enregistreur.

Il est fréquent d'avoir recours à cette méthode lorsque par exemple, vous effectuez toutes les semaines la même requête d'extraction vers une Base de Données (SAP, SAGE, etc.), et que wavez besoin, à chaque fois :


- De supprimer les mêmes colonnes qui vous sont inutiles
- De mettre en forme les titres des colonnes avec du gras
- De renommer certains titres de colonnes afin qu'ils soient plus parlants
- De trier par ordre croissant, par exemple, la colonne contenant des dates

L'ensemble de ces manipulations, toujours les mêmes, peuvent être enregistrées et mémorisées dans Excel, afin d'être « rejouées » ultérieurement.

Afficher l'onglet Développeur

Les macros et les outils VBA⁶ se trouvent sous l'onglet **Développeur**, qui est masqué par défaut. la première étape consiste donc à le rendre visible. Pour plus d'informations, voir afficher l'onglet Développeur.

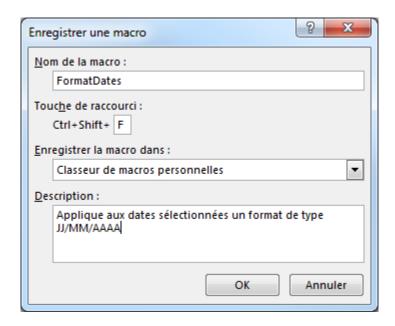
Dans l'onglet **Fichier / Options / Personnaliser le ruban /** sous Personnaliser le ruban et Onglets principaux, activez la case à cocher **Développeur**. Cliquez sur **OK**.

⁶ Visual Basic for Applications: le langage de programmation commun aux logiciels Office.

Bon à savoir sur les macro-commandes

Nous vous conseillons très vivement, avant de procéder à tout enregistrement de macro-commandes, de travailler sur une copie de votre feuille, voire une copie de la copie. En effet, les macro-commandes exécutées ne s'annulent pas! Excel exécute du code programmé, et ne sait pas inverser ce code. Méfiance, et entraînez-vous avant!

- Lorsque vous enregistrez une macro pour exécuter un ensemble de tâches dans une plage dans Excel, la macro s'exécute uniquement sur les cellules comprises dans cette plage. Par conséquent, si vous ajoutez une ligne à la plage, la macro n'exécute pas le processus sur la nouvelle ligne, mais uniquement sur les cellules figurant dans la plage.
- Les tâches enregistrées dans une macro Excel ne se limitent pas à Excel. Le processus de votre macro peut s'étendre à d'autres applications Office ainsi qu'à toute autre application prenant en charge le code Visual Basic Applications (VBA). Par exemple, vous pouvez enregistrer une macro qui commence par mettre à jour un tableau dans Excel, puis qui ouvre Outlook pour envoyer le tableau à une adresse de courrier.


Source: Site officiel de Microsoft.

Enregistrer une macro

Dans l'onglet **Développeur** / section **Code** / cliquez sur **Enregistrer une macro**.

Donnez un nom à votre macro-commande pour pouvoir l'exécuter plus tard. Choisissez **Classeur de macros personnelles** pour pouvoir l'exécuter depuis un autre classeur.

Validez avec **OK**.

Dans la zone **Nom de macro**, entrez un nom pour la macro. Utilisez un nom aussi explicite que possible afin de pouvoir retrouver rapidement votre macro si vous en créez plusieurs.

Remarque : le premier caractère du nom de la macro doit être une lettre. Les caractères suivants peuvent être des lettres, des nombres ou des caractères de soulignement. Les espaces ne peuvent pas être utilisés dans un nom de macro ; un caractère de soulignement peut faire office de séparateur de mots. Si vous utilisez un nom de macro qui est également une référence de cellule, vous risquez d'obtenir un message d'erreur indiquant que le nom de macro n'est pas valide.

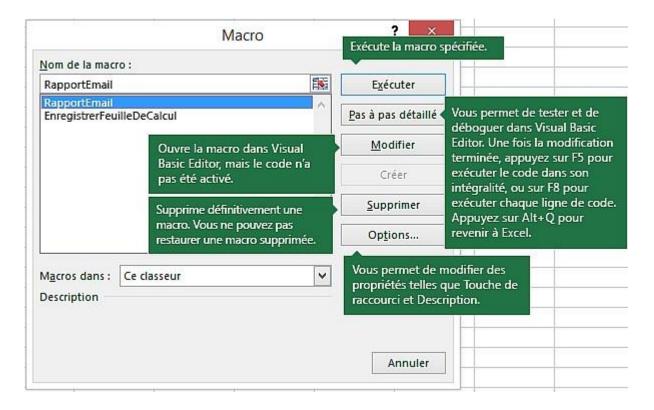
Pour affecter un raccourci clavier pour exécuter la macro, dans la zone touche de raccourci, tapez une lettre (les majuscules ou minuscules) que vous voulez utiliser. Il est préférable d'utiliser des combinaisons de touches CTRL + MAJ (majuscules), car la touche de raccourci macro remplace une touche de raccourci Excel par défaut lorsque le classeur contenant la macro est ouvert. Par exemple, si vous utilisez Ctrl + Z (annuler), vous perdrez la possibilité de procéder à l'annulation dans cette instance d'Excel.

Dans la liste **Enregistrer la macro dans**, sélectionnez l'emplacement où vous voulez conserver la macro.

En règle générale, vous enregistrez votre macro dans l'emplacement de **ce classeur**, mais si vous souhaitez qu'une macro soit disponible chaque fois que vous utilisez Excel, sélectionnez classeur de macros personnelles. Lorsque vous sélectionnez Classeur de macros personnelles, Excel crée un classeur de macros personnelles masqué (Personal.xlsb) s'il n'en existe pas, puis enregistre la madans ce classeur.

Dans la zone **Description**, tapez éventuellement une brève description de l'action de la macro. Même si le champ Description est facultatif, il est recommandé d'en entrer un. Vous pouvez également entrer une description significative avec des informations susceptibles d'être utiles à vos utilisateurs ou à d'autres utilisateurs exécutant la macro. Si vous créez un grand nombre de macros, la description peut vous aider à identifier rapidement la macro à utiliser, sans quoi vous devrez peut-être deviner.

- Cliquez sur **OK** pour démarrer l'enregistrement. A ce stade, vous êtes filmé(e)! tout ce que was faîtes va être enregistré par la machine. Pensez-y lorsque vous allez effectuer vos manipulations.
- Réalisez les actions que vous souhaitez enregistrer.
- Dans l'onglet **développeur**, dans le groupe **code** , cliquez sur **arrêter l'enregistrement**

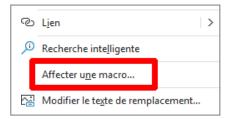


Utiliser une macro-commande

Avertissement: l'exécution d'une macro ne peut pas être annulée. Avant d'exécuter pour la première fois une macro enregistrée, assurez-vous que vous avez enregistré le classeur dans lequel vous voulez exécuter la macro, ou, mieux encore, travaillez sur une copie du classeur pour éviter des modifications indésirables. Si vous exécutez une macro qui ne fait pas ce que vous souhaitez, vous pouvez fermer le classeur sans l'enregistrer.

Dans l'onglet **Développeur**, cliquez sur **Macros** pour afficher les macros associées à un classeur. Ou appuyez sur **ALT + F8**. Cette action ouvre la boîte de dialogue **Macro**.

Affecter une macro-commande à un bouton


Insérez une forme depuis l'onglet **Insertion / Formes /** par exemple un **Rectangle à bords arrondis**. Vous pouvez décrire ce que fait la macro en écrivant dans votre forme.

Faîtes un **Clic Droit** sur la forme / Affecter une macro.

Choisissez la macro que vous souhaitez affecter dans la liste qui s'affiche. Validez avec le bouton **OK**.

Votre bouton exécute désormais la macro-commande désirée!

RACCOURCIS EXCEL VRAIMENT UTILES

Besoin	Action
Zoomer / dézoomer	+ (roulette de la souris)
Sélectionner une feuille non visible (La zone à considérer est en bas à gauche de votre fenêtre Excel)	Faîtes un dans cette zone et choisissez votre feuille dans la liste
Modifier le contenu d'une cellule	ou Touche
Sélectionner toute votre Base de Données (et contrôler son intégrité)	(se positionner dans la base)
Couper / Copier / Coller	CTRL + X / CTRL + C / CTRL + V
Recopier un format sur plusieurs cellules ou plages	sur / Appliquez / Terminez avec
Déplacer une cellule et son contenu avec la souris (ou des plages)	Cliquer / Glisser depuis le bord de la sélection A A C A B C C C C
Dupliquer une cellule et son contenu avec la souris (ou des plages)	Cliquer / Glisser depuis le bord + maintenir A A C A B C C C C C C
Insérer / Supprimer une colonne (ligne)	CTRL + + / CTRL + -
Insérer plusieurs colonnes (lignes)	Sélectionnez autant de colonnes (lignes) avant d'insérer vos colonnes (lignes)
Se déplacer rapidement dans une Base de Données	Utilisez CTRL + → ou → ou ← ou ↑
Faire une copie d'une feuille en faisant un CTRL + Cliquer / Glisser	Je suis une feuille Je suis une feuille (2)